Using Semantic Features to Improve Task Identification in Email Messages
نویسندگان
چکیده
Automated identification of tasks in email messages can be very useful to busy email users. What constitutes a task varies across individuals and must be learned for each user. However, training data for this purpose tends to be scarce. This paper addresses the lack of training data using domain-specific semantic features in document representation for reducing vocabulary mismatches and enhancing the discriminative power of trained classifiers when the number of training examples is relatively small.
منابع مشابه
Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملReverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages
Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...
متن کاملEmail Task Management: An Iterative Relational Learning Approach
Today’s email clients were designed for yesterday’s email. Originally, email was merely a communication medium. Today, people engage in a variety of complex behaviours using email, such as project management, collaboration, meeting scheduling, to-do tracking, etc. Our goal is to develop automated techniques to help people manage complex activities or tasks in email. The central challenge is tha...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کامل